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In this document, I present the design and analysis of a market-making algorithm tailored to
efficiently manage liquidity provision in a trading environment. Leveraging a provided dataset of
order book and trade data for a specific token, I explore a potential approach for market-making:

• Market-Making Around a Predictive Fair Value: This approach focuses on determining
an optimal fair value for the token and providing bid and ask quotes around this value. The
predictive fair value is derived based on an analysis of market dynamics, allowing for competitive
yet efficient liquidity provision.

The document outlines the following components:

• The rationale behind the selected algorithm, considering its applicability and advantages in the
given market context.

• The mathematical foundation and key assumptions underlying the algorithm.

• A comprehensive explanation of how the algorithm processes order book and trade data to
generate quotes dynamically.

• An evaluation of potential risks and limitations of the approach, along with possible mitigation
strategies.

• A detailed description of the expected behavior and output of the algorithm under various
market conditions.

This work showcases a systematic approach to market-making, integrating theoretical insights
with practical data analysis to propose an algorithm that balances profitability and risk management
in a highly dynamic trading environment.

Introduction

A Market Maker (MM) is an entity that provides liquidity to the market by quoting buy and sell
prices for an asset (in this case, a token) and profiting from the difference between the bid price (buy)
and the ask price (sell). The market maker must balance:

1. Providing liquidity: Posting buy and sell orders at various price levels.

2. Risk management: Avoid situations where orders are not filled, leading to potential losses.

3. Profit from the spread: Making money from the difference between the price at which they buy
(bid) and sell (ask).

Our goal is to design an MM that provides quotes around a predictive fair value for an asset. In the
model we will use, the MM places Limit Orders (LOs) on the Limit Order Book (LOB) at strategic
distances from the current midprice to maximize profits while managing the likelihood of their orders
being executed.
To develop the algorithm, we will first need to derive a predictive fair value for the asset, which serves
as the baseline for placing our quotes. The model we employ assumes that the market maker is a
risk-neutral trader with costless inventory management and infinite patience and that all relevant
information is public. The MM will observe the current LOB and output quotes (i.e., buy and sell
limit orders) based on its computed predictive fair value. The approach assumes that the predictive
fair value will guide the optimal placement of these LOs, ensuring the MM remains competitive.
Let’s split the problem into two separate subtasks: evaluating the fair price and formulating the
optimal quotes.
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Fair price prediction

Several methods can be used to estimate a fair price in real-time trading. In the following, we will
introduce the formula of two simple fair price estimators.

Mid-Price of the Best Bid and Ask

The mid-price is the average of the best bid and ask prices in the order book:

Smid =
Best Bid + Best Ask

2
(1)

Each of these quantities is evaluated at a specific time T. The mid-price reflects an actionable price
by capturing the center of market activity. However, in thin or volatile markets, wide spreads can
make the mid-price less reliable. Thus, it is best suited for liquid markets with tight spreads.

Weighted Mid-Price (Depth-Weighted)

This method takes into account both the best bid and ask prices, weighting them by the available
depth (size) at each level:

Swmid =
(Bid Price× Bid Size) + (Ask Price×Ask Size)

Bid Size + Ask Size
(2)

Each of these quantities is evaluated at a specific time T. The weighted mid-price adjusts for order
book imbalances, providing a fairer estimate in uneven markets.
However, it can be affected by large orders or price manipulation.
Thus, it is useful for markets with frequent imbalances on one side of the order book.

For liquid markets, these two approaches are usually sufficient. In the following, we will employ
the Weighted Mid-Price approach since if the market were perfectly balanced, it would converge to
the mid-price estimate

Optimal quotes estimate

The problem of estimating the optimal quotes is of vital relevance for the MM. Indeed, Garman
(1976) demonstrated that market makers require a bid-ask spread to remain viable by managing
inherent imbalances between buy and sell orders.1 These imbalances arise from varying trader needs
and preferences, such as risk tolerance and market access, which create temporary disparities in order
flow.

The need of MM’s quotes spread

In Garman’s model, the market maker acts as a monopolist, setting bid and ask prices to receive
and process orders while aiming to maximize profit and avoid running out of cash or inventory—a
condition that would cause them to fail. This model uses the Gambler’s Ruin Problem to quantify
the likelihood of a market maker going bankrupt:2

Prfailure =

(
Prloss · Loss
Prgain ·Gain

)Initial Welth

(3)

Here, the market maker risks failure if their probability of losing inventory or cash exceeds
their probability of gaining it, which depends on the relative probabilities of buy and sell order
arrivals, denoted as λa for buys and λb for sells. Calling pa , and pb the ask and bid prices respectively,
the Gambler’s Ruin Problem can be expressed by the following equations:
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lim
t→∞

Prfailure(t) ≈ K ∈ (0, 1) , if λb > λa

= 1 otherwise

lim
t→∞

Prfailure(t) ≈ J ∈ (0, 1) , if λapa > λbpb

= 1 otherwise

In order for a market maker to remain viable, the conditions from these equations must both be
satisfied simultaneously. This requires that the following inequalities hold at the same time:

λb > λa and λapa > λbpb

For these inequalities to be true together, it must always hold that pa > pb, which establishes the
bid-ask spread. Thus, bid-ask spreads are vital conditions for an MM.
However, the problem now is to define the optimal prices the MM should employ to maximize its
terminal wealth.

Formal Derivation

Given that market participants operate in a competitive, efficient environment, our MM algorithm
will need to continually adjust her quotes based on incoming market data and her estimation of the
predictive fair value. This ensures the MM remains competitive in the market while minimizing the
risk of unfilled orders, leading to optimal profitability. Let’s assume that the MM seeks a strategy
(δ±t )0≤t≤T that maximizes cash at the terminal time T without penalizing uncertainty in her sales
directly. At this terminal time, the MM will liquidate her remaining inventory QT using a market
order (MO) at the midprice. Additionally, the MM restricts her inventory within specified bounds
q±lim, ensuring that it does not exceed an upper limit q+lim > 0 or fall below a lower limit q−lim < 0,
where both limits are finite. Penalties on inventory levels are also applied at terminal time through a
coefficient α ≥ 0, representing the liquidity-taking fees and the impact of the MO as it moves through
the LOB, and ϕ ≥ 0, the parameter penalizing running inventory levels. With this preamble, the MM
seeks to solve this stochastic optimization problem to maximize its cash at terminal date T :3

H(t, x, S, q) = sup
δ±

E
[
XT +Qδ

T (S
δ
T − αQδ

T )− ϕ

∫ T

t
(Qu)

2du

]
(4)

Where, for each time t ∈ [0, T ] we define:

1. St is the midprice which is a stochastic variable defined as

St = S0 + σWt

Where σ > 0, and Wt is a Brownian motion connected to price fluctuations;

2. δ±t are the depths at which the MM posts LOs (i.e. the spread of its quotes), and are the
variables against which the MM needs to optimize;

3. Xt is the MM’s cash process satisfying

dXδ
t = (St + δ+)dN δ,+

t − (St − δ−)dN δ,−
t

Where N δ,±
t denote the counting process for the MM’s filled sell (+) and buy (-) LOs;

4. The MM’s inventory satisfies
Qδ

t = N δ,+
t −N δ,−

t
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We further assume that other participants buy (+) and sell (-) MOs arrive at Poisson times with
rates λ±. Equation 4 is a stochastic control problem and can be solved by employing the dynamic
programming principle (DPP) and the related non-linear partial differential equation (PDE) known as
the Hamilton-Jacobi-Bellman (HJB) equation also called the dynamic programming equation (DPE).
The DPE for this class of problems read:3

0 =∂tH +
1

2
σ2∂SSH − ϕq2

+ λ+ sup
δ+

{
e−κ+δ+

(
H

(
t, x+

(
S + δ+

)
, q − 1, S

)
−H

)}
Iq>q

+ λ− sup
δ−

{
e−κ−δ−

(
H

(
t, x−

(
S − δ−

)
, q + 1, S

)
−H

)}
Iq<q̄,

(5)

Where I is the indicator function. Equation 5 it is representing a stochastic diffusion problem with
control. Indeed, the first two terms ∂tH + 1

2σ
2∂SSH are typical of diffusion processes. Additionally,

the term ϕq2 captures the effect of penalizing deviations of inventories from zero along the entire path
of the strategy, which represents the inventory cost due to misalignment with the target inventory. In
the second line of the DPE, the supremum over δ+ contains the terms corresponding to the arrival
of a market buy order, which is filled by a limit sell order. Similarly, in the last line of the DPE, the
supremum over δ− contains analogous terms for the market sell orders that are filled by limit buy
orders. In addition, κ± is a parameter that adjusts the likelihood of a LO being filled when a MO
arrives, according to:

Λ±
t = λ±e−κ±δ±t (6)
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Given my choice of developing an MM that provides quotes around a predictive fair value, we will
make the following assumptions for the MM:

1. It does not impose a penalty on running inventories;

2. It does not incur a terminal inventory penalty (i.e., φ = α = 0)

3. There are no constraints on the amount of inventory the strategy may accumulate (i.e., |qlim| →
∞);

4. At terminal time T , the inventory is unwound at the midprice.

Given these assumptions, the optimal MM’s strategy, i.e. the solution to Eq. 4 becomes:3

δ+,∗(t, q) =
1

κ+
, and δ−,∗(t, q) =

1

κ−
(7)

The strategy in Eq. 7 translates into the MM posting in the LOB, maximizing the probability of
the LOs being filled.
However, κ±, which in our case defines the whole MM’s strategy, needs to be estimated. Even in this
simple case, κ± is not easy to estimate, and the whole optimal strategy might depend upon several
factors, such as the latest trading prices, market volatility, and order imbalances.4
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MM implementation: MarketMaker class

The MarketMaker class simulates a market maker’s process of generating bid and ask quotes. It takes
order book data (bids and asks) and calculates a fair price for the asset using the volume-weighted
midpoint of the best bid and ask. Based on this fair value, the class generates bids and asks for quotes
by applying a spread, determining the prices at which the market maker is willing to buy and sell.
The spread from the fair price is defined as

δ± = ±c ·∆±
t , where c ∈ [0, 1] (8)

Where ∆±
t are the observed best ask/bid prices from the orderbook at time t. Although I know I

shouldn’t simulate the strategy, I found a kind of appealing, having only a couple of constants to
define.

Figure 1: Shortened code snippet of the MarketMaker class.
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Risks and limitations

While this model provides a structured approach to market-making, there are several limitations:

• Unrealistic Assumptions: The model assumes infinite patience, no trading costs, and risk
neutrality, which may not reflect real-world conditions where transaction costs, inventory man-
agement, and risk considerations are present.

• Market Conditions: The model assumes that other market makers’ actions are independent
of the MM’s decisions and that market orders follow a simple, predictable distribution. In
practice, market dynamics can be more complex, with information asymmetry, sudden market
shocks, and other factors that influence trading decisions.

• Predictive Fair Value Accuracy: The quality of the quotes depends on the accuracy of the
predictive fair value. If the predictive model is inaccurate, the MM’s quotes may be suboptimal,
leading to either missed opportunities or excessive risk exposure.

Thus, my implementation of this model into the MarketMaker class described before has several
limitations and risks. It assumes that the best bid and ask prices (∆±

t ) and their midpoint suffi-
ciently represent the asset’s fair value, which may not hold in volatile or illiquid markets where price
movements are rapid or order book imbalances occur. The spread calculation, δ± = ±c ·∆±

t , uses a
constant c and does not dynamically adapt to changes in volatility, liquidity, or market conditions,
potentially resulting in inefficient pricing. Moreover, the model lacks inventory risk management, ex-
posing the market maker to significant risks of accumulating unbalanced positions and adverse price
movements. Additionally, the model relies only on the best bid and ask, ignoring order book depth,
and does not account for the market maker’s impact on prices, which can lead to signaling risks or
inefficiencies. Furthermore, external factors such as news, macroeconomic data, or correlated asset
prices are not incorporated, potentially undermining the accuracy of the fair value calculation. De-
pendency on accurate order book data exposes the model to risks from spoofing or manipulation. Key
risks include inventory risk, where unbalanced positions due to imbalanced order flows can result in
significant losses, and adverse selection risk, where informed traders exploit mispriced quotes, leaving
the market maker at a disadvantage. Other risks include liquidity risk in shallow markets, volatility
exposure due to rapid price changes, operational risks such as system errors or downtime, and regula-
tory risks associated with improper market-making behavior. To address these limitations, the model
can incorporate dynamic spread adjustments based on market conditions, implement inventory risk
management mechanisms, use deeper order book analysis, refine fair value calculations with external
data.
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Results

We first analyze the behavior of the fair price against the actual trade price (See Fig. 2) throughout
the period under analysis.

Figure 2: (Top) Fair price (blue) and actual trade price (red) as a function of time. (Bottom)
Difference in percentage between the two prices.

As can be noticed, the difference between the prices is bound below 1.02% for all market events. Thus,
our fair price is a good approximation of the true trade price.

Let’s now analyze the market trend using a candlestick chart (See Fig. 3). After an initial slight
downtrend and low-volatility market behavior (small candles and wicks), we observe a clear uptrend
from July 19 to 23. This period is characterized by consecutive green candles, signaling strong buy-
ing pressure. On July 19, a bullish engulfing pattern initiates this uptrend, as a larger green candle
completely engulfs the preceding red candle. The buy/sell volume ratio reaches 1.145 on July 19,
suggesting strong buyer dominance. This is further supported by increased bid depth, indicating
ample liquidity to sustain the upward movement (See Fig. 4).
A reversal pattern forms around July 23, with the market exhibiting more erratic price action due
to low liquidity (evidenced by the long wicks in the candlesticks and the lowest cumulative depths in
both the bid and ask orders, see Fig. 4). This lack of depth leads to large price fluctuations, and on
July 27, a sharp red candle with long wicks indicates selling pressure. At this point, the buy/sell ratio
drops to 0.864, confirming the dominance of sellers. The sudden price drop may be due to external
factors such as news or market sentiment shifts, leading to a spike in volatility.
From July 28-29, green candles appear, signaling potential recovery.

An ideal MM should continuously adapt its strategy to the prevailing market conditions. In a low-
volatility, down-trending market with small candles and wicks, the MM should focus on providing
liquidity with tight bid-ask spreads while minimizing inventory risk by adjusting bids and asks fre-
quently. During a bullish trend characterized by consecutive green candles and strong buying pressure,
the MM should narrow the spread to capture increased trading volume while carefully accumulating
inventory on the buy side. It is crucial to monitor the buy/sell volume ratio to gauge the strength
of the trend and adjust the strategy accordingly. When a reversal occurs, and the market enters a
downtrend, the MM should widen the spread to mitigate risk, reduce exposure to falling prices by
unwinding positions, and employ hedging strategies to protect against downside risk. Finally, during
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periods of recovery, the MM should adjust the spread to reflect the renewed buying pressure but re-
main flexible, watching for signs of continuation or further reversal. By monitoring market indicators
like buy/sell ratios, order book depth, and liquidity, the MM can continuously adjust its behavior,
offering liquidity when possible while managing risk through dynamic spread adjustments, inventory
management, and hedging. In this way, the MM maximizes profitability while minimizing risk across
varying market conditions.
Our MM strategy is not ideal. In particular, the spread is set as a fixed proportion of the observed
bid/ask spread in the order book (δ± = ±c ·∆±

t , with c = 50%).
In a low-volatility phase, this approach is likely to provide liquidity efficiently, as the MM quotes
close to the market spread. However, in a bullish market, the MM may find itself less competitive,
as it may not capture trades at higher volumes if the spread narrows quickly. During a downtrend
or reversal, the strategy could be less effective, as the MM might not widen its spread fast enough to
account for increased volatility, leading to potential exposure to larger price movements. Finally, in a
recovery phase, the strategy could perform better as the market stabilizes, but the MM must remain
cautious of sudden reversals. Overall, while this strategy can provide liquidity in calm markets, it
might not be robust enough in volatile or fast-moving conditions, potentially exposing the MM to risk
or missed opportunities if it does not adjust dynamically to market changes.

This is consistent with the observed behavior of the MM in practice (See dotted lines in Fig. 3),
where the quotes are consistently tight and close to the asset’s closing price, reflecting the rigid spread
strategy. However, as noted, this approach does not account for high-volatility periods, during which
the MM would need to widen the spread to manage risks more effectively.

Figure 3: Daily candle stick graph of the price of the asset. The blue and red dotted lines represent
the MM’s bid and ask quote respectively.
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Figure 4: Daily Orderbook depth.

Figure 5: Daily Volume analysis.
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Reflection on Machine Learning Models for Strategy Optimization

Although simulating the strategy was not part of the task, I got excited by the potential of using
machine learning (ML) techniques to train a market-making strategy. Specifically, one could design
a system involving two Long Short-Term Memory (LSTM) models trained on three-quarters of the
provided dataset. The first LSTM model aims to simulate the dynamics of the order book, while the
second model simulates trade execution within the order book. One could test and evaluate these
models on the remaining quarter of the dataset. These models can be used as surrogate oracles to train
a reinforcement learning (RL) strategy. In this setup, the MM is treated as a RL agent interacting
with the oracle’s order book, posting quotes that could potentially be filled by the trades generated
by the trade-oracle. The RL agent learns an optimal strategy by minimizing a loss function that
is properly defined. This approach enables the MM to adapt to the simulated market environment,
refining its strategy over time by learning from trial and error.
Although exciting, at least for me, this methodology does have some limitations. One significant
challenge is the complexity of accurately simulating the market dynamics, as real-world order books
and trading patterns are influenced by a wide range of factors that might not be captured by the
LSTM models. Additionally, the agent’s performance may be highly dependent on the quality and
representativeness of the training data, which can impact how well the strategy generalizes to unseen
market conditions. Furthermore, while the RL agent can adapt to simulated environments, translating
this to real-world market conditions might prove difficult, especially if the market experiences drastic
changes or unforeseen events that are not part of the training data.
Nevertheless, it was fun thinking about it.
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