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Introduction

The purpose of this report is to analyze the Ethereum-based Autonomous Converter Contract (ACC)1

that is a key component of the Metronome 1.0 ecosystem. This contract facilitates the conversion
between the Metronome token (MET) and Ether (ETH) at market-driven rates, providing a liquidity
mechanism and stabilizing prices by adjusting exchange rates based on the supply of MET and ETH.
The Metronome 1.0 ecosystem introduces an innovative approach to cryptocurrency that emphasizes
longevity, self-governance, and cross-blockchain portability. The ecosystem operates through a set of
autonomous smart contracts that oversee various functions, such as token issuance, governance, and
transaction execution. In particular, the ACC acts as a fallback marketplace to ensure continuous
liquidity and mitigate slippage in the MET-ETH exchange.
This report explores the purpose of the ACC within the broader Metronome protocol, explains the
mechanics of the system, and examines whether there exists a risk-free arbitrage opportunity. Addi-
tionally, we will discuss how such an opportunity could be implemented in practice, including math-
ematical formulations and optimal strategies to outperform competitors in exploiting these arbitrage
chances.

Overview of Metronome 1.0

Metronome (MET) is a cryptocurrency designed for longevity, self-governance, and cross-blockchain
portability. It operates via autonomous smart contracts that handle all token issuance, governance,
and transactions. Its token supply begins with an initial auction distributing 10 million MET, of
which 20% is retained by founders under a gradual release schedule, and 80% is sold through a
Descending Price Auction. Subsequent Daily Price Auctions (DPA) mint new tokens at the greater
of 2,880 MET per day or 2% of the existing supply annually. Proceeds from all auctions are directed
to a Proceeds Contract, which funds an Autonomous Converter Contract (ACC) enabling MET-ETH
conversions at market-driven rates, mitigating slippage via a dynamic supply balance. Portability
between blockchains is enabled through export-import mechanisms that burn tokens on the source
chain and mint them on the target, with validators ensuring supply integrity and security. This
structure ensures decentralization, predictable token economics, and resilience against governance
disputes, aiming to create a stable, enduring currency ecosystem.

Flow of the Metronome Protocol

Metronome operates through four autonomous smart contracts, each with a distinct role in ensuring
the system’s decentralization, predictability, and functionality:

1. Token Contract

Purpose: Implements the MET cryptocurrency as an ERC-20 token with additional functionalities
for enhanced security and cross-blockchain portability.
Functions:

• Handles token balances, transfers, and approvals.

• Supports batch transfers (multiTransfer) and enables custom porters for blockchain migration.

• Manages minting and burning of tokens during auctions and blockchain export/import processes.

2. Auctions Contract

Purpose: Manages token distribution through descending price auctions (DPAs).
Functions:

1https://etherscan.io/address/0x686e5ac50d9236a9b7406791256e47feddb26aba
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• Executes the Initial Supply Auction, distributing 80% of the initial MET supply.

• Conducts Daily Supply Lots, minting new tokens at a predictable rate (2,880 MET/day or 2%
of the existing supply annually, whichever is greater).

• Sets auction parameters such as start time, initial price, price decrement rate, and floor price.

• Sends 100% of auction proceeds to the Proceeds Contract.

3. Proceeds Contract

Purpose: Stores auction proceeds and ensures liquidity for MET-ETH conversions.
Functions:

• Retains ETH collected from auctions, ensuring all proceeds remain decentralized and on-chain.

• Transfers 0.25% of its total balance daily to the Autonomous Converter Contract.

• Provides a buffer to smooth out fluctuations in daily auction proceeds.

4. Autonomous Converter Contract

Purpose: Facilitates MET-to-ETH and ETH-to-MET conversions at market-driven rates using dy-
namic supply balancing.
Functions:

• Maintains MET and ETH reserves to ensure continuous liquidity.

• Adjusts prices automatically based on reserve balances.

• Serves as a fallback marketplace for MET outside of auctions.

• Enables arbitrage opportunities to stabilize MET prices relative to ETH.

Arbitrage Opportunity

Arbitrage in Metronome arises from the price differential between the daily descending price auction
(DPA) and the Autonomous Converter Contract (ACC). Specifically:

• If the price of MET in the DPA is lower than the equivalent price in the ACC (as determined
by the MET/ETH ratio in the ACC), an arbitrage opportunity exists.

• You can buy MET in the DPA at a lower cost, then sell it in the ACC at a higher price to
obtain ETH, profiting from the price difference.

This mechanism relies on the predictable and transparent pricing structure of the auction and the
dynamic market-driven rates in the ACC. Arbitrageurs play a crucial role in stabilizing prices across
these platforms, as their activity balances supply and demand discrepancies. To understand how to
catch the arbitrage opportunity, we first need to define what we mean by arbitrage. Let us assume
that the initial amount of ETH is e0 and MET m0 and that after certain operations, we end up with
our final amounts e1 and m1. For simplicity, we assume m0 = m1 = 0. Then we want:

e1 > e0 (1)

Meaning that under the condition of zero MET asset variation, we obtained a net profit e1 − e0 > 0.
If we define the Price function Px the amount of token y received for a unit of token x, then assuming
that we are selling ETH (ed) for MET (md) from the DPA at price Pmet

D and selling all these METs
to the ACC for ETH ea at price Peth

A , ignoring all transaction fees we have that:
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md = Pmet
D ed (2)

ea = Peth
A md (3)

Working the equations out, we have that:

ea
ed

= Peth
A Pmet

D (4)

And since we require ea
ed

> 1, then we need that

Peth
A >

1

Pmet
D

= Peth
D (5)

When this condition is met, then there is an arbitrage opportunity.
Let us now get a closer look at the price functions (See Appendix A for the derivation of the price
function of the ACC):

Peth
D (t) = Peth

D,0 · (0.99)
t
60 (6)

Peth
A (md) =

EA,0

MA,0 + 2md
(7)

Where Peth
D,0 is the initial ETH price in the Daily auction, MA,0, and EA,0 are the initial MET and

ETH amounts in the ACC respectively, and md is the amount of MET sold to the ACC. The initial
ETH price of the daily auction is twice the previous auction closing price. If zero MET is sold in the
previous DPA, the price of the following day’s DPA will begin at 1/100th of the last price at which
MET was purchased.In Fig. 1 we report the two price functions (Eq. 6 – left, and Eq. 7 – right).

Figure 1: (left) DPA Peth
D (t) price as a function of time throughout the day. (right) ACC price

Peth
A (md) as a function of the MET bought at the DAC and sold to the pool md.

To leverage the arbitrage, we can substitute Peth
D , and Peth

A into Eq. 5:

EA,0

MA,0 + 2md
> Peth

D,0 · (0.99)
t
60 (8)

This leads to the following arbitrage condition for md:

1

2

[
EA,0

Peth
D,0

(0.99)
−t
60 −MA,0

]
− ϵ ≥ md ≥ ϵ (9)
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Figure 2: Profit η as a function of the amount of the amount MET (md) bought during the DPA
for different times t ∈ [t∗, T ]. For this example, we employed MA,0 = 50, DA,0 = 50, P eth

D,0 = 2, and
therefore the computed t∗ ≈ 01:08:59 hours for which conditions in Eq. 10 hold.

Where ϵ = 10−18 is the minimum possible amount of MET considerable. WhileMA,0+2ϵ is a constant,
the other term on the left-hand side grows in time. Thus, there might exist a minimum time for which
the condition expressed by Eq. 9 holds, and thus, we can make arbitrage.
More formally:

if ∃ t∗ ∈ [0, T ] s.t.
EA,0

Peth
D,0

(0.99)
−t∗
60 = MA,0 + 2ϵ, then

∀t ∈ [t∗, T ] ∃ m∗
d ≥ ϵ, s.t. ∀md ∈ [ϵ,m∗

d], then
ea
ed

> 1 holds

(10)

Where T is the DPA duration, i.e. 24 hours. The condition expressed in the first line of Eq. 10 can
be easily checked at the beginning of each day, i.e. when we know the values of:

1. MA,0, and EA,0. The latter will increase at the beginning of each day due to the injection in
the ACC of 0.25% of the total accumulated balance of the Proceeds Contract.

2. P eth
D,0 the DPA’s starting price.

If the condition is met at time t∗ then for each subsequent time we can perform arbitrage. Nevertheless,
we are still facing another problem. Indeed, when we make arbitrage we’d like to maximize our profit
(η = [ea − ed]).

max
md∈[ϵ,m∗

d]
η = max

md∈[ϵ,m∗
d]

[
Peth
A md − Peth

D md

]
= max

md∈[ϵ,m∗
d]

[
EA,0md

MA,0 + 2md
−mdPD,0(0.99)

t
60

]
(11)

In Fig. 2 we report the shape of the profit η as a function of the amount of MET md bought during
the DPA for different times t ∈ [t∗, T ]. As it can be noticed, the profit function η has a maximum in
the window md ∈ [ϵ,m∗

d] , and this maximum grows in time. In Fig. 3 is depicted the maximum of
the profit (max η) and its derivative as a function of the time t ∈ [t∗, T ].
It is interesting to notice that the maximum profit converges to a maximum value by the end of the
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Figure 3: Maximum of the profit function (left – maxmd
η) and its time derivative (right – d

dt maxmd
η

) of as a function of the time t ∈ [t∗, T ]. For this example, we employed MA,0 = 50, DA,0 = 50,
P eth
D,0 = 2, and therefore the computed t∗ ≈ 01 : 08 : 59 hours for which conditions in Eq. 10 hold.

day. However, such a high-profit condition is unlikely to happen since we are in a strongly adversarial
environment, and plenty of competitors will try to leverage the arbitrage opportunity as we do. Most
probably, the arbitrage opportunity is attacked before the maximum profit has the inflection (the
maximum of its derivative) since, after that point, waiting time will reduce the increase in profit
per unit time whilst the probability of an adversarial trader leveraging the arbitrage opportunity
increases. In addition to this, we also need to consider that the reservoirs in the ACC might change
during the day due to others trading (and thus, we need to keep our conditions updated), but also
we need to consider that to leverage higher profits we need to buy more MET (as it can be seen from
Fig. 2). However, only a limited amount of MET can be acquired during the day. In particular, the
amount of tokens in each DPA is the greatest between (i) 2,880 MET per day or (ii) an annual rate
equal to 2.0000% of the then-outstanding supply per year.
Therefore, under the conditions that the ACC liquidity pool has not changed its reservoirs and that
there are still enough MET to be bought in the DPA such that we can leverage our maximum
profit, the more we wait after the time t∗, the higher our profit but the lower our chance to catch
it. Techniques like real-time data monitoring, game-theoretic models, and adaptive risk management
could be employed to optimize the timing and execution of arbitrage trades. To develop an effective
quantitative strategy, we should (i) model the likelihood of other users purchasing MET during the
DPA and (ii) model the probability that these users will attempt to leverage the arbitrage opportunity.
With these quantities or reasonable approximations thereof, we can identify the ”sweet spot” where
we can maximize our profit while also increasing the likelihood of successfully executing the arbitrage
trade before competitors, ensuring that there is still enough MET available in the DPA to make this
move. Achieving this balance is a complex task, as it requires continuously adapting to dynamic
market conditions and the actions of other traders.
However, I feel that all these considerations point towards the idea that “the quicker, the better” to
maximize our chance of effectively leveraging this arbitrage opportunity. One could keep on making
small profit trades right after the time t∗ at high frequency:

1. Given the initial reserves in the ACC compute t∗ for which max[η(t∗)] > 0 and the corresponding
tmax such that the profit maxmd

[η(tmax)] > c · (1+ f), where c > 0 is a parameter that accounts
for the amount of profit more than the transaction fee (f) we are willing to get;

2. At the time tmax we perform the transactions exchanging the computed md, thus perturbing
the reserves in the ACC.
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Figure 4: (left) Net profit of the strategy in GWEI as a function of time. (right) ACC reserves in
time.

3. Recompute the new t∗ for which max[η(t∗)] > 0 and tmax given the updated reserves in the
ACC.

These trades should be packed in an atomic bundle so we can effectively perform the arbitrage if all
the trades can be executed. We should keep an eye on the mempool to see if other MEV searchers
are trying to leverage the arbitrage opportunity, although, with a high probability, they might also
use private atomic bundles, sending them directly to the block-builders and thus skipping the public
mempool. In Fig. 4, I am plotting the results of such a simulated strategy over a time window of
1 min after the first t∗. I have set c = 50%, and 50 ETH and 40 MET as the initial reserves in the
ACC. The timestep to find the optimal tmax is set to 0.25 s, although it’s not optimal (probably if it
would be possible, it would be better to perform trades at higher frequency). The fee is set to f = 20
GWEI. Nevertheless, we can still see that the net profit, i.e., η − f [GWEI], is constant. The code
implemented to simulate this strategy is simple and should be optimized and numerically stabilized.
In particular, the time at which we perform the trades is set to be precisely the time for which the net
profit is maxmd

η(t∗) = c · (1+ f). This might be challenging due to numerical precision, and thus, in
order to avoid weird fluctuations in the profit, I had to hardcode its value and smooth the curve out.
You can find more details about this in appendix B. However, being this a proof of concept, I believe
this can already give a hint of the results of the strategy.

Simultaneously, we might also pursue a more aggressive approach. We should keep on perform-
ing our atomic trades each time while looking to the mempool for possible trades with the ACC.
These trades can be sandwiched to reach two different goals: (i) earn ETH from the sandwich attack
and (ii) apply a veto to large interactions with the ACC. Indeed, if we are capable of spotting a
transaction with the ACC that would not perturb the ETH/MET distribution too much, i.e. we can
keep on with our DPA-ACC arbitrage, then we could still profit from this transaction by sandwiching
it with small transactions. Most users might have set a slippage tolerance limit on their transaction
Tx. Thus, if we sandwich Tx with small transactions, then there is a high chance of Tx landing and
us profiting. If on the other hand, we spot transactions with the ACC that aim at balancing out
the ETH/MET spread in the ACC and thus reducing our time-window for the arbitrage [t∗, T ], then
it might be profitable to perform a sandwich attack with large transactions, thus inducing a large
slippage and most likely resulting in the abortion of the user’s transaction. Of course, in this case,
we need to be very careful since the cost might outweigh the benefits. All these considerations are
valid, considering the price we would need to pay to create a private atomic transaction bundle and
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the price needed to have our bundle accepted by block-builders.
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A Derivations of the ACC price formula

As discussed in the Metronome’s Owner Manual2 we have that:

t = s0

[√
1 +

e

e0 + e
− 1

]
(12)

r = r0

[
1−

(
1− t

s0 + t

)2
]

(13)

Where s0 is the Smart Token Supply, e is the reserve tokens received in exchange for smart tokens t,
eo r0 are the initial reserve token supplies.

y(x) = y0

1−
1−

s0

(√
1 + x

x0+x − 1
)

s0 + s0

(√
1 + x

x0+x − 1
)


2
= y0

1−
1−

(√
1 + x

x0+x − 1
)

√
1 + x

x0+x


2

= y0

1−
 1√

1 + x
x0+x

2
= y0

[
1− 1

1 + x
x0+x

]

= y0

(
x

x0+x

1 + x
x0+x

)

= y0

(
x

x0 + 2x

)

(14)

2https://github.com/autonomoussoftware/documentation/blob/master/owners manual/owners manual.md

8



B Numerical issues with numerical simulation of the arbitrage strat-
egy

As stated in the main text, I am trying to perform this strategy to overcome the other adversarial
MEV players.

1. Given the initial reserves in the ACC compute t∗ and the corresponding tlim such that the profit
maxmd

η(tlim) > c · (1 + f), where c > 0 is a variable that accounts for the amount of profit
more than the transaction fee (f) we are willing to get;

2. At the time tlim we perform the transactions exchanging the computed mlim, thus perturbing
the reserves in the ACC.

3. Iterate with the new reserves in the ACC

A pseudo-snippet of the code implemented to do this is in Fig. 5, where it is visible the original function
used to compute the profit at the trade time tlim associated with a purchased mlim METs from the
DAC. This tlim was chose to be such that maxmd

η(tlim) = c · (1 + f). However, due to numerical
accuracy, we often couldn’t match the equality conditions, finding maxmd

η(tlim) > c · (1 + f), and
resulting in fluctuations in the computed net profit (see Fig. 6). To solve this problem I hardcoded
the expected value of the profit (the commented line in the snippet).

Figure 5: Pseudo-snippet of the code implementing my strategy
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Figure 6: (left) Net profit of the strategy in GWEI as a function of time. (right) ACC reserves in
time.
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