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1 Introduction

The Raman effect is the inelastic scattering of photons when they interact with matter. Surface-enhanced Raman
scattering (SERS) is a commonly used sensing technique in which the Raman effect of molecules is greatly
enhanced by factors up to 108 or even larger (enabling single-molecule (SM) detection in some cases) by placing
them near the surface of suitably nanostructured substrates [1]. Two competing mechanisms have been proposed
so far to describe SERS, namely: electromagnetic (EM) enhancement and chemical (CT) enhancement [1][2][3].
However, the search for a unified theory of SERS is an open topic [2]. In this work the most recent theories,
relying on time-dependent perturbation theory (TDPT) for the treatment of both EM and CT effects will be
presented. In order to do it in a comprehensive and self-contained way, the work is organized as follows: first the
reader will be introduced to the interaction picture in non relativistic quantum mechanics, then the TDPT will
be presented in this formalism making use of the perturbative expansion of the unitary time evolution operator.
Next the fundamentals of the quantization of the radiation field will be presented in order to gain insights into
the molecular quantum electrodynamics mechanisms underlying the Raman effect and the time ordered terms of
the Dyson series will be expressed in terms of Feynman diagrams, in order to simplify the treatment of high order
effects. Then the well-known theory for the Raman scattering will be presented and will be recast in a useful
framework, making use of Feynman diagrams of third order inelastic processes. After this, the theories for EM
and CT enhancement will be presented making use of TDPT to high orders. Eventually, a personal suggestion
on how the theories of the two effects can be merged into a unique framework to treat SERS will be presented.
The quantities that need to be computed and the possible theoretical and technical problems that might arise
will be then briefly analyzed.

2 Theoretical Background

2.1 Time Evolution: the Interaction Picture

The interaction picture of quantum mechanics is an alternative picture with respect to the usual Schrödinger’s
or Heisenberg’s. It becomes particularly useful when dealing with time-dependent Hamiltonians. Let’s consider:

H = H0 + V (t) with H0|n〉 = εn|n〉 (2.1)

Where H0 is time independent and thus V (t) leads to transitions between states |n〉. The idea behind the
interaction picture is to separate the time evolution due to H0 from the one caused by the time dependent
perturbing potential V (t). This is obtained by performing the following unitary transformation:

|Ψ(t)〉I = eiH(t−t0)/~|Ψ(t)〉 ; VI(t) = eiH(t−t0)/~V (t)e−iH(t−t0)/~ (2.2)

The state vector |Ψ(t)〉 in the Scrödinger’s picture is expressed as:

|Ψ(t)〉 =
∑
m

cmn(t)e−iωm(t−t0)|m〉 (2.3)

Where ωm = εm/~. This means that the interaction picture state vector |Ψ(t)〉I will have dropped the time-
dependency on H0 which was endowed in the e−iωm(t−t0) term , indeed:

|Ψ(t)〉I =
∑
m

cmn(t)|m〉 (2.4)

By performing the time derivative on |Ψ(t)〉I one obtains the following time dependent Schrödinger equation
(TDSE) in the interaction picture:

i~∂t|Ψ(t)〉I = VI(t)|Ψ(t)〉I (2.5)

1



The evolution of the wavefunction can be expressed through an appropriate unitary time evolution operator, i.e.
:

|Ψ(t)〉I = ÛI(t, t0)|Ψ(t0)〉I (2.6)

By substituting this into Eq.2.5 and dropping out the ket, since the equation is valid irrespective of the particular
initial state, one obtains:

i~∂tÛI(t, t0) = VI(t)ÛI(t, t0) (2.7)

The solution to Eq.2.7 is the path ordered exponential, which expanded leads to the well known Dyson series [4]:

ÛI(t, t0) = 1 +

∞∑
m=1

(
− i

~

)m ∫ t

t0

dt′
∫ t′

t0

dt′′· · ·
∫ tm

t0

dtmV (t′)V (t′′) . . . V (tm)

= 1− i

~

∫ t

t0

VI(t
′)dt′ − 1

~2

∫ t

t0

∫ t′

t0

VI(t
′)VI(t

′′)dt′dt′′ + . . .

(2.8)

Where t > t′ > t′′ > · · · > tm > t0.

2.2 Time Evolution: Time Dependent Perturbation Theory (TDPT)

If we assume that |Ψ(t0)〉I = |n〉, the coefficients cm(t) of the expansion 2.4 can be obtained in orders of the
perturbative expansion of ÛI(t, t0) represented by Eq.2.8:

cmn(t) = 〈m|Ψ(t)〉I = 〈m|ÛI(t, t0)|n〉

= 〈m|Û (0)
I (t, t0)|n〉+ 〈m|Û (1)

I (t, t0)|n〉+ 〈m|Û (2)
I (t, t0)|n〉+ . . .

= c(0)
mn + c(1)

mn + c(2)
mn + . . .

(2.9)

Where:

c(0)
mn = δmn (2.10)

c(1)
mn = − i

~

∫ t

t0

〈m|VI(t1)|n〉dt1 = − i
~
〈m|V |n〉

∫ t

t0

eiωmn(t1−t0)dt1 (2.11)

c(2)
mn = − 1

~2

∫ t

t0

∫ t1

t0

〈m|VI(t1)VI(t2)|n〉dt1dt2 = − 1

~2

∑
j

∫ t

t0

∫ t1

t0

〈m|VI(t1)|j〉〈j|VI(t2)|n〉dt1dt2

= − 1

~2

∑
j

〈m|V |j〉〈j|V |n〉
∫ t

t0

eiωmj(t1−t0)

∫ t1

t0

eiωjn(t2−t0)dt1dt2

(2.12)

In the derivation of this formulae, we have used the resolution of the identiy, i.e. I =
∑
k |k〉〈k|. Moreover,

we implicitly considered the perturbing potential to be time independent. This might seem counterintuitive
based on the whole development we have done so far, which was based on a time dependent perturbing potential
V (t) e.g. the electromagnetic radiation (e.m.) of a laser source. However, as we shall see in the next section,
this is in agreement with a quantum electrodynamical treatement of the light-matter interaction, and doesn’t
undermine the developement of the time dependent perturbation theory based on the expansion of the unitary
time evolution operator ÛI(t, t0) carried out until now. In order to calculate the coefficients, we now need to
evaluate the integrals involving the complex exponentials, together with evaluating the Vjn = 〈j|V |n〉 matrix
elements. For sake of simplyifing the notation, in the following discussion we will call no-TDPT the n-th order
time-dependent contribution.

2.3 Quick Overview: Molecular Quantum Electrodynamics Theory in Chemical
Physics

When treating light-matter interaction, two theories are commonly applied: Semiclassical theory and Quantum
Electrodynamics. Semiclassical theory (SCT) is a framework where matter is treated with methods that pertain
quantum mechanics, whereas light is treated in a classical fashion. In Quantum Electrodynamics (QED) both
light and matter obey the laws of quantum mechanics, and together they make up a closed system. Thus, if a
molecule is excited, a photon is withdrawn from the radiation field and vice versa satisfying energy conservation
within this closed system. In the framework of optics, QED usually treats space and time nonrelativistically
[5], and in the following we shall briefly present the description that arises in this formulation. In particular, (
without making all the derivation) the freely propagating radiation field is associated to an Hamiltonian which
decomposes into a sum of modes (see Eq.2.15) each of which is identified by two quantum numbers: a wave-
vector k, which points in the direction of the propagation of the photon with angular frequency ω = ck, and two
possible polarization directions λ. Each term in the Hamiltonian has the structure of an harmonic oscillator.
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The overall state of the radiation field is generally specified by occupation number vectors in the Fock space,
generally written as:

|n1(k1, λ1), n2(k2, λ2), . . . 〉 (2.13)

The ket |n1(k1, λ1)〉 indicates a state with the energy of n photons occupying the mode (k, λ). In this description,
only modes with n 6= 0 are considered. The quantum electrodynamical Hamiltonian for an ensemble of molecules
interacting with radiation can then be expressed as follows [6]:

H = Hrad +
∑
ζ

Hmol(ζ) +
∑
ζ

Hint(ζ) (2.14)

Where:

Hrad =
∑
k,λ

(
a†kλakλ +

1

2

)
~kc (2.15)

Hmol =
∑
α

p2
α

2mα
+ V (ζ) (2.16)

Hint = −ε−1
0 µ(ζ) · d⊥(Rζ)− ε−1

0 Qij(ζ)∇id⊥j (Rζ)−m(ζ) · b(Rζ) + · · ·+

+
e2

8m

∑
α

[(qα(ζ)−Rζ) × b(Rζ)]
2 +

1

2ε0

∫
|p⊥(r)|2dr

(2.17)

Where Hmol(ζ) is the Hamiltonian of an isolated atom or molecule with center of mass in ζ. Hint(ζ) will be
the interaction energy between the molecular system and the radiation field. In the equations, d⊥(r) and b(r)
are the transverse electric displacement field operator and magnetic filed operator respectively. The operators
qα and pα are the position vector and the canonical momentum of the α-th charged particle and V(ζ) is the
total intramolecular energy. The interaction between the radiation field and matter is expressed in terms of
the multipole operators: µ (electric dipole), m (magnetic dipole), Q (electric quadrupole), etc. The last two
terms in Eq.2.17 represent the leading contribution to an additional diamagnetic interaction energy and a field-
independent contribution only significant for self energy calculations; p⊥ is the transverse component of the
electric polarization. Moreover, we assumed that the Coulombic interactions within each atom or molecule can
be separated out [6].
The form of the quantum electrodynamical field operator is expressible as a sum over radiation modes, and in
the case of the transverse electric displacement it reads:

d⊥(r) = i
∑
k,λ

(
~ckε0

2V

) 1
2 [
ekλakλe

ik·r − ēkλa
†
kλe
−ik·r] (2.18)

Where ekλ is the polarization unit vector for the electric field and ēkλ is its adjoint. For our purposes we can
assume them to be real, thus ēkλ = ekλ. Moreover V is a quantization volume.
Let’s now consider:

Hmol|j〉 = εj |j〉 = εj,mol|j〉 (2.19)

Hrad|Θ〉 = εΘ|Θ〉 = εΘ,field|Θ〉 (2.20)

Then the eigenstates to the non-interacting Hamiltonian will be:

(Hmol +Hfield)|j〉|Θ〉 = (εj,mol + εΘ,field)|j〉|Θ〉 (2.21)

The definition of a basis for the unperturbed molecule-radiation field space, allows us to define a more practical
formulation of the electric-dipole interaction operator:

µ =
∑
ijΘΓ

|i,Θ〉〈i,Θ|µ|j,Γ〉〈j,Γ|

=
∑
ij

µij |i〉〈j| =
∑
ij

µijC
†
iCj

(2.22)

Where C†i , Cj are creation and annihilation operators for the molecular states. Note that i and j are a shorthand
notation for all relevant quantum numbers regarding the molecular state. Moreover the resolution of the identity
in the joint molecule-field space, the orthonormality of the Fock |Θ〉 eigenstates and the resolution of the identity
in the photonic space have been used. This formulation allows us to rewrite the interaction Hamiltonian to the
first order in the multipolar expansion in a convenient form:

Hint,1 = −ε−1
0 µ · d⊥(Rζ)

= −
∑
kλ

∑
ij

(
~ck

2V ε0

) 1
2

ekλ · µij
[
akλe

ik·Rζ − a†kλe
−ik·Rζ

]
C†iCj

(2.23)
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If we now assume that the wavelength of the radiation η = 2π/k is much bigger than the dimension of the molecule
(Electric Dipole Approximation), then e−ik·Rζ = 1 = eik·Rζ . Thus, the approximate interaction Hamiltonian
reads:

Hint,1 = −
∑
kλ

∑
ij

GijkλakλC
†
iCj −G

ij
kλa
†
kλC

†
iCj (2.24)

Where Gijkλ =

(
~ck

2V ε0

) 1
2

ekλ · µij . As we can see, the interaction Hamiltonian is built in such a way that a

change in the molecular state |j〉 to the state |i〉 is accompained either by the annhiliation or the creation of a
photon. For sake of simplicity we will just consider the first part of this interaction Hamiltonian, i.e. where akλ
is contained. If we now assume to consider this to be the perturbing potential V for which we developed the
TDPT in the previous section, and we assume the unperturbed state of the overall molecule + field system to
be in |N〉 = |n,Γ〉 , then to the first order in the perturbative expansion:

c
(1)
MN = c

(1)
(m,Θ),(n,Γ) =

i

~

∫ t

t0

〈m,Θ|ei
H0
~ (t1−t0)

∑
kλ

∑
ij

Gijkλakλ|i〉〈j|e
−iH0

~ (t1−t0)|n,Γ〉dt1

=
i

~
∑
kλ

∑
ij

Gijkλ

∫ t

t0

ei(ωmn−ωkλ)(t1−t0)〈m|i〉〈j|n〉〈θ|akλ|Γ〉dt1

=
i

~
√
nx,ξ

∑
ij

Gijx,ξ
ei(ωMN )(t−t0) − 1

ωMN
=
i

~
√
nx,ξ

∑
ij

Gijx,ξδ(EM − EN )

(2.25)

Where ωMN = (EM −EN )/~ = (∆Emol + ∆Efield)/~ takes into account the overall energy balance of the closed
molecule + field system. The Dirac’s delta function δ(EM − EN ) is introduced because energy conservation is
required, usually this term can be substituted by the normalized lineshape function of the transition g(ωMN )
[7]. Moreover (x, ξ) is the label of the photonic mode in which a photon is annhilated and nx,ξ is the number
of photons of this mode in |Γ〉. The spectral distribution of the incoming radiation is recovered considering all
the possible final photonic states |Θ〉 that have at most one photon of difference with respect to the initial state.
This result is obtained by exploiting the equation of motion of the creation and annhilation operators 1. This has
allowed us to justify the usage of the TDPT for a time-independent perturbing potential Hint. Before proceeding
to analyze the Raman effect, it is interesting to present the Feynman Diagrams method for the evaluation of the
perturbative coefficients as those just calculated.

2.4 A Brief Detour in the World of Feynman Diagrams

As we pointed out in section 2.1, the unitary time evolution operator ÛI(t, t0) can be expanded in a series
Eq.2.8 in orders of the interaction. These subsequent terms are built taking into account the time ordering of the
interaction processes, indeed t > t′ > t′′ > · · · > tm > t0. This means that the time evolution of the wavefunction
can be expressed as well in orders of the interaction. Moreover, the k -th term of this expansion, expresses the time
evolution of the wavefunction, caused by k subsequent interaction with the perturbing potential. Thus, to this
order, the perturbative expansion of the electronic wavefunction of a molecule interacting with the electromagnetic
field (e.m.) will contain strings of k e.m. field operators. Their ordering in the string will express the time ordering
of these processes, e.g. strings of the type aνa

†
µaη will represent a third order process in which a photon with

energy εη is absorbed, then a photon with energy εµ is emitted, and then the molecule is excited again by
absorbing a photon with energy εν . Each process contributes to the perturbative expansion of the wavefunction

with a matrix elements VMN and with a nested (in time) integral of the form
∫ t′
t0
ei(ωMN )(t′′−t0)dt′′. If we are

not interested in evaluating the specific form of the perturbed wavefunction, but rather we are interested just

1In particular, if we consider the form of the creation and annhilation operators in the interaction picture:

aI = ei
H0
~ (t−t0)ae−i

H0
~ (t−t0) (2.26)

a†I = ei
H0
~ (t−t0)a†e−i

H0
~ (t−t0) (2.27)

. We are allowed to write their equation of motion as:

ȦI = i

[
H0, AI

]
+ ei

H0
~ (t−t0)

(
∂tA

)
e−i

H0
~ (t−t0) (2.28)

Since H0 = Hmol+Hrad but Hmol doesn’t act on the |Θ〉 photonic states, given the form of Hrad in Eq.2.15, it is easy to obtain the
explicit time-dependency of the interaction picture creation and annhilation operators acting on the unperturbed radiation states:

aI,ν = e−iενaν (2.29)

a†I,ν = eiενa†ν (2.30)
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in evaluating transition rates, then the contribution of each process can be simplified in VMN
ωMN−iγ , where γ takes

into account the finite lifetime for the virtual transitions in the molecule. A quick and intuitive way to evaluate

the perturbative c
(k)
MN coefficients, to any order k of the perturbation is by using Feynman diagrams. The rules

for drawing a Feynman diagram are the following [8]:

1. Excitations such as photon, phonons and electron–hole pairs in Raman scattering are represented by lines (or
propagators). These propagators can be labeled with properties of the excitations such as their wavevectors,
frequencies, and polarizations.

2. The interaction between two excitations is represented by an intersection of their propagators. This inter-
section is known as a vertex.

3. Propagators can be drawn with an arrow to indicate whether the corresponding excitations (quasiparticles)
are created or annihilated in an interaction. Arrows pointing towards a vertex represent excitations which
are annihilated. Those pointing away from the vertex are created.

4. When several interactions are involved they are always assumed to proceed sequentially from bottom to
top as a function of time.

5. Once a diagram has been drawn for a certain process, other possible processes are derived by permuting
the time order in which the vertices occur in this diagram.

6. Each vertex, i.e. each scattering event contibutes to the perturbative coefficient with a term VMN
ωMN±iγ .

Following these rules it is straightforward to draw the Feynamn diagram related to the third order process
described before of absorption-emission-absorption:

ων

ωμ

ωη

|m⟩

| j⟩

| i⟩

| f ⟩

aνa†
μaη → → K(3),νμη

if = ∑
jm

Hint,ν
fm Hint,μ

mj Hint,η
ji

(ωmi + ωμ − ωη − iγm)(ωji − ωη − iγj)

Figure 1: Example of a third order process with it’s Feynman diagram and the related scattering amplitude K.
In the formula Hint,β

ij = eβ · µij =
∑
a µ

a
ij = µβij , with a = x, y, z. The kets represent molecular states.

At this point we have at our disposal both the theory (time-dependent perturbation theory in non-relativistic QED
framework) and a practical tool (Feynamn diagrams), which are needed to understand and handle practically the
theory and equations underlying the surface enhanced Raman effect. However it is still useful to draw a quick
review over the classical Raman effect.

3 The Classical Raman Effect

The Raman effect is the inelastic scattering of a photon by matter, the classical theory to describe it, is developed
within the framework of the second-order time dependent perturbation theory (2o-TDPT). The processes involved
can be represented by two Feynman diagrams, see Fig. 2. Where Kνµ

1,IF , Kνµ
2,IF indicate the scattering amplitude

|R⟩

| I ⟩

|F ⟩ ωμ

ων

|R⟩

| I ⟩

|F ⟩

ωμ

ων

Kνμ
1,IF = ∑

r

μμ
FRμν

RI

(ωRI − ων − iγ) Kνμ
2,IF = ∑

r

μν
FRμμ

RI

(ωRI + ωμ − iγ)

Figure 2: Feynman diagrams and scattering amplitudes for 2o-TDPT Raman processes. Kets represent molecular
states.
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of the first and of the second process respectively. According to Fermi’s Golden rule, the total Raman intensity
will therefore be proportional to:

IRaman α

∣∣∣∣Kνµ
1,IF +Kνµ

2,IF

∣∣∣∣2 =

∣∣∣∣∑
a,b

α̃abIF

∣∣∣∣2 (3.1)

Where a = x, y, z and b = x, y, z which independently refer to the molecule fixed coordinate system. Moreover,
we introduced the transition dynamic polarizability as:

α̃abIF =
1

~
∑
R 6=I,F

(
µaFRµ

b
RI

(ωRI − ων − iγRI)
+

µbFRµ
a
RI

(ωRF + ων + iγRF )

)
(3.2)

Key is now to consider explicitly the molecular transition dipole moments µaFR = 〈F |µa|R〉. In particular it is
necessary to explicit the form of the molecular wavefunction |M〉:

Hmol|M〉 = EM |M〉 (3.3)

If we now assume that we can separate the molecular Hamiltonian into a vibrational, rotational and an electronic
part, then:

if Hmol =
[
Hvib +Hrot +Hel

]
(3.4)

then |M〉 = |emvmrm〉 = |em〉|vm〉|rm〉 (3.5)[
Hvib +Hrot +Hel

]
|M〉 =

(
εem + εvm + εrm

)
|em〉|vm〉|rm〉 = ~ωM |M〉 (3.6)

Where we have assumed that the translational motion of the molecule has already been separated. At this point
we can write the Raman transition polarizability Eq.3.2 as:

ãabIF = 〈rfvfef |α̂abIF |eiviri〉 (3.7)

Where we introduced the polarizability operator:

α̂abIF =
1

~
∑

M 6=I,F

(
µa|ejvjrj〉〈rjvjej |µb

(ωMI − ων − iγMI)
+
µb|ejvjrj〉〈rjvjej |µa

(ωMF + ων + iγMF )

)
(3.8)

Several simplifications are furthermore usually carried out. If the temperature is not too high, then the initial
electronic state is considered to be the ground state which is moreover in general considered to be nondegenerate.
In conventional Raman scattering, the radiation lies well below any electronic transition frequency, implying that
the final state |F 〉 will be an excited rotovibrational state of the ground electronic state, i.e. |F 〉 = |eivfrf 〉
with |I〉 = |eiviri〉. Moreover, for usual exciting frequencies, the range of the spectrum ωrmri and ωrmrf will
be negligible, unless ων is resonant with some vibronic transitions. The usual approach is thus to drop the
dependency upon the rotational spectrum at the denominator of Eq.3.8, employing the closure relation

∑
j |rj〉〈rj |

and integrate Eq.3.2 over the rotational degrees of freedom. Thus:

α̂abIF →
1

~
∑
J 6=I,F

(
µa|ejvj〉〈vjej |µb

(ωJI − ων − iγJI)
+

µb|ejvj〉〈vjej |µa

(ωJF + ων + iγJF )

)
(3.9)

ãabIF → 〈vfef |α̂abif |eivi〉 (3.10)

Where here ωJI = ~(εej + εvj − εei − εvi). It is now common practice to integrate the transition dipole moments
over the electron coordinates and then expand them in a Taylor series over the normal modes (Qα) at the
equilibrium geometry [9], i.e.:

〈en|µa|em〉 = µanm(0) +
∑
α

µanm(α)Qα; µanm(α) =

(
∂µanm
∂Qα

)
0

(3.11)

A somewhat different approach which brings to the same expression but allows us to have a good starting
point for our treatment of SERS is that followed by Lombardi et al.[10]. Indeed, they exploit the key concept
in Herzberg-Teller theory that even small vibrations may cause mixing of zero order Born-Oppenheimer states
|ej , 0〉, allowing them to write:

|ej〉 = |ej , 0〉+
∑
em 6=ej

∑
α

λmj(Qα)|em, 0〉 (3.12)

λmj(Qα) =
hmj(Qα)Qα
(E0

m − E0
j )

(3.13)

hmj(Qα) = 〈em, 0|
∂H

∂Qα
|ej , 0〉 (3.14)
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Substituting this into the Raman transition polarizability expression Eq.3.8 and recalling that |F 〉 = |eivf 〉,
|I〉 = |eivi〉 and |K〉 = |ekvk〉; one obtains at the first order in the normal modes Qα:

˜αIF
ab = A+B + C (3.15)

A =
1

~
∑
K 6=I

∑
vk

[
µaeiekµ

b
ekei

(ωKI − ω − iγKI)
+

µbeiekµ
a
ekei

(ωKF + ω + iγKF )

]
〈vi|vk〉〈vk|vf 〉 (3.16)

B =
1

~
∑
α

∑
K 6=I

∑
vk

∑
em 6=ek

[
µaeiekhkmµ

b
emei

(ωKI − ω − iγKI)
+

µbeiekhkmµ
a
emei

(ωKF + ω + iγKF )

]
〈vi|vk〉〈vk|Qα|vf 〉

~ωMK

+

[
µaeiemhmkµ

b
ekei

(ωKI − ω − iγKI)
+

µbeiemhmkµ
a
ekei

(ωKF + ω + iγKF )

]
〈vi|Qα|vk〉〈vk|vf 〉

~ωMK

(3.17)

C =
1

~
∑
α

∑
K 6=I

∑
vk

∑
em 6=ei

[
µaemekhimµ

b
ekei

(ωKI − ω − iγKI)
+

µbemekhimµ
a
ekei

(ωKF + ω + iγKF )

]
〈vi|vk〉〈vk|Qα|vf 〉

~ωIM

+

[
µaeiekhmiµ

b
ekem

(ωKI − ω − iγKI)
+

µbeiekhmiµ
a
ekem

(ωKF + ω + iγKF )

]
〈vi|Qα|vk〉〈vk|vf 〉

~ωIM

(3.18)

Further considerations and approximations can can be carried out depending on the conditions under which the
Raman process is occurring. For example, in the case when ωKI >> ω then expression A, B and C can be
simplified further, leading to:

A = α̃abIF 〈vi|vf 〉 B + C =
∑
α

(
∂α̃abIF
∂Qα

)
0

〈vi|Qα|vf 〉 (3.19)

In vibrational Raman scattering vf 6= vi. Thus, the allowed transitions are those along normal modes that cause
a change in polarizability, and in the nuclear harmonic approximation one obtains the usual vibrational Raman
selection rule, for which vf = vi±1. It makes sense for our discussion to notice that the Herzberg-Teller expansion
of the molecular electronic states (Eq.3.12) is introducing a further approximation, making in practice our Raman
theory a third order theory. A perhaprs more consistent approach would be that of considering immediately the
3o-TDPT coefficients over an Hamiltonian which includes non adiabatic effect, i.e. what translates into the
mixing of zero order Born-Oppenheimer states. In doing so, we follow the theory of the linear-vibronic coupling
[11] [12]. In particular we can consider the molecular Hamiltonian to have the following form [13]:

Hmol = Hel(Q) +Hnuc (3.20)

Where Q provides the nuclear coordinates in terms of displacements in normal modes, computed at a reference
geometry, Q = 0. We now approximate the nuclear kinetic energy operator, disregarding the rotational and
the vibro-rotational part. Moreover we treat the nuclear-nuclear repulsion term in the harmonic approximation.
Doing so allows us to write [14]:

Hnuc
∼= Hharm

nuc =
∑
α

ωα

(
1

2
+ b†αbα

)
(3.21)

Where b†α, bα are the creation and annihilation operators in the vibrational normal mode Qα = (2ωα)−1/2(b†α+bα)
with energy ωα. Expanding the electronic Hamiltonian in Taylor series with respect to the normal coordinates
Q we obtain:

Hmol = Hel(0) + Q · ∇Q
[
Hel

]
(0) +Hham

nuc (3.22)

This equation is the basis for the linear-vibronic coupling theory. In particular the first term is the usual Born-
Oppenheimer (BO) electronic Hamiltonian. The last term is the vibrational harmonic Hamiltonian, whereas the
term Q ·∇

[
Hel

]
(0) = Hep is the so called electron-phonon coupling. In the language of second quantization, this

can be rewritten as [15]:

Hep =
∑
jj′α

Mep
jj′αC

†
j′Cj(b

†
α + bα) (3.23)

Where C†j′ (Cj) are creation (annihilation) operators for the electronic states. Note that j is a shorthand notation
for all relevant quantum numbers regarding the electronic state, including momentum and spin. Moreover the
electron phonon interaction matrix terms are given by:

Mep
αjj′ =

∑
s

√
~

2NMsωα
eαs ·

∫
d3rψ∗j′(r)ψj(r)∇sU(r)eiQα·r (3.24)

Where N is the number of atoms in the system, Ms is mass of the atom s, Qα is the phonon wave vector, ωα
is the phonon frequency, and and eαs represents the unit movement of atom s for the vibrational mode defined
by the quantum number α. Again, we are, in principle, assuming that both j and α represent, respectively, all
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the quantum numbers of the electronic and vibrational states of the whole system. The function ∇sU(r) is the
change in potential energy at position r due to an infinitesimal movement of atom s. Let’s now consider the
following Hamiltonian:

H = H0 +Her +Hep (3.25)

Where H0 = Hel(0) + Hharm
nuc and Her and Hep are the electron-photon (Eq. 2.24) and electron-phonon (Eq.

3.23) interaction Hamiltonians. By performing third order TDPT over them, the Raman scattering processes (for
simplicity we consider only Stokes processes, i.e. a phonon is emitted) are obtained from the following Feynman
diagrams (excluding the time-permutation of the photonic processes):

Figure 3: Some of the processes involved in the Stokes Raman scattering. In blue the photons and in orange the
phonon. The molecular system is represented by the line and time proceed from bottom to the top of the figure.

Which leads to the following total scattering amplitude Wσ,ρ,q = W
(rpr)
σ,ρ,q +W

(rrp)
σ,ρ,q +W

(prr)
σ,ρ,q , where:

W (rpr)
σ,ρ,q =

∑
ik′k

χiqk′k
Mer,ρ
ik′ M

ep,q
k′k M

er,σ
ki

(Ek′ − Ei + ~ωq − ~ω0) (Ek − Ei − ~ω0)
(3.26)

W (rrp)
σ,ρ,q =

∑
ik′k

χiqk′k
Mep,q
ik′ M

er,ρ
k′k M

er,σ
ki

(Ek − Ei − ~ω0) (Ek′ − Ei − ~ωq)
(3.27)

W (prr)
σ,ρ,q =

∑
ik′k

χiqk′k
Mer,ρ
ik′ M

er,σ
k′k M

ep,q
ki

(Ek′ − Ei + ~ωq − ~ω0) (Ek − Ei + ~ωq)
(3.28)

Where i, k and k′ zero-order Born Oppenheimer states evaluated at the equilibrium geometry and χ are some
selection-rules functions, the from of which is not important now. If the time-permutation of the processes is
taken into account, the summation will lead to terms identical to those in Eqs.3.17 - 3.18. Although the results
are the same, this has allowed us to introduce the non-adiabatic terms right at the beginning of our treatment,
separating the Hamiltonian into terms with a very clear physical picture and allowing us to use a unique tool
(namely TDPT) to reach the expressions needed to calculate the Raman intensity. The advantage of this will
become evident in the next sections.

4 Surface Enhanced Raman Effect

Suface-enhanced Raman scattering (SERS) is the giant enhancement of the Raman scattering cross section for a
molecule in proximity of a suitably nanostructured substrate, in general a metal [16]. It is widely accepted [1][2][3]
that the enhancement arises as a combination of an electromagnetic (EM) enhancement associated with plasmon
excitation in metal particles serving as the SERS substrate and a chemical (CHEM or CT) enhancement due
to the target molecules being able to transfer electrons to/from the metal particles in both ground and excited
states, often in the process of forming the metal molecule bond [1]. The theory of EM enhancement is a classical
theory. It describes the plasmon as an external antenna for the standard Raman process. This implicitly separates
a coupled quantum mechanical system (plasmon and Raman scatterer) into two distinct parts. Although this
separation might be useful to have a pictorial representation of the processes occurring, the physics underlying
the SERS is utterly different. As we learned from section 2.3 radiation and molecular systems have to be treated
as part of a single, closed system, where enegy is conserved. This leads to the idea that SERS should be treated
as one quantum-mechanical process that must not be separated into distinct subsystems [17]. The chemical
mechanism of SERS refers to contributions to the Raman scattering that do not rely on the EM environment
(e.g., plasmon excitation), often because they are associated with the transfer of electrons between adsorbed
molecules and the NP substrate [1]. The most recent theories developed to explain these different enhancement
mechanisms [15],[17],[18] rely in considering SERS as a higher-order Raman scattering (HORa) and thus are
treated within the framework of time-dependent perturbation theory. In particular, foundamental papers from
Niclas S. Mueller et al. [17][18] allow us to gain a theroetical perspective in the processes involved in the EM
enhancement, whereas a paper from E.B.Barros and M.S. Dresselhaus [15] study the processes of charge transfer.
The next sections are meant to provide a brief description of the models developed by the authors of the different
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papers. The derivation of the formulae can be found in the papers. It will be the purpose of the last section to
suggest a way to merge these two effects in a comprehensive treatement of the SERS within the theory of HORa.

4.1 SERS as HORa Process: EM Enhancement

Following the ideas of Niclas S. Mueller et al. [17] we consider a general SERS experiment where a plasmonic
nanostructure is coupled to a molecule as a Raman scattering probe (Fig.4). Let’s now consider the following
SERS-type scattering event: an incoming photon ωL excites a localized surface plasmon (LSP) mode w with
energy ωw. The LSP couples via its near field to the molecule and excites a transition from the molecular ground
state with energy εvibg into an intermediate vibronic state with energy εvibi . This intermediate state can be a

virtual state. The molecule relaxes into a final vibronic state with energy εvibf exciting again the LSP. Finally, the
Raman scattered light ωS is emitted by the LSP. This process corresponds to a fourth-order process in TDPT and

is depicted as a Feynman diagram in Fig.4B with a scattering amplitude Kw,w′,j
pl−pl (ωL). In addition to this process,

there are other three processes that have the same initial (incoming photon ωL, molecule in vibronic ground state
g) and final state (Raman scattered photon ωS , molecule in vibronic excited state f). These scattering pathways
interfere, leading to the selective increase or decrease of plasmonic enhancement at a given excitation wavelength.

Figure 4: EM enhancement as a higher-order Raman process. (A) Sketch of a plasmon-enhanced Raman process
relevant for SERS. The steps are: (1) excitation of a plasmon by the incoming light ωL; (2) molecular transition
from ground state g to intermediate state i by coupling to the plasmonic near field; (3) molecular relaxation
to final state f and excitation of the plasmon; (4) emission of Raman-scattered light ωS by the plasmon. (B)
Plasmon-enhanced Raman process in (A) illustrated as a Feynman diagram which corresponds to fourth-order
perturbation theory. (C) Feynman diagrams of three other scattering processes that are relevant for SERS, i.e.,
(i) only the incoming light Kw,j

pl−pt or (ii) only the Raman-scattered light couples to the plasmon Kw,j
pt−pl and (iii)

the Raman process without plasmonic enhancement Kj
pt−pt.[18]

The Raman scattering amplitudes associated with each process can be calculated in the framework of TDPT
and are reported below:

Kw,w′,j
pl−pl (ωL) =

MwL

pt−plM
w′,j
pl−vibM

w,j
vib−plMw

pl−pt(
~ωL + εvib

g − εvib
f − ~ωw′ − iγw′

) (
~ωL + εvib

g − εvib
j − iγvib

j

) (
~ωL + εvib

g − ~ωw − iγw
) (4.1)

Kw,j
pl−pt (ωL) =

Mj
pt−vibM

w,j
vib−plMw

pl−pt(
~ωL + εvib

g − εvib
j − iγvib

j

) (
~ωL + εvib

g − ~ωw − iγw
) (4.2)

Kw,j
pt−pl (ωL) =

Mw
pt−plM

w,j
pl−vibM

j
vib−pt(

~ωL + εvib
g − εvib

f − ~ωw − iγw
) (

~ωL + εvib
g − εvib

j − iγvib
j

) (4.3)

Kj
pt−pt (ωL) =

Mj
pt−vibM

j
vib−pt

~ωL + εvib
g − εvib

j − iγvib
j

(4.4)
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Where ”vib” stands for vibronic. Key is now to evaluate the coupling matrix elements Mk−l = 〈k|Hint|l〉.
To do so, we need to make explicit the form of the interaction Hamiltonians.

4.1.1 Quantization of the LSP and Interaction Hamiltonians

In order to make a coherent treatment of all the phyiscal enetities coming into play (e.m. field, vibration field,
electronic states, etc.), the localized surface plasmons of the metallic nanoparticles needs to be quantized. This
is done by using the jellium model [18], which assumes a density of N free electrons that move in the presence
of a uniform positively charged background [19]. In this case the plasmonic Hamiltonian can be written as:

Hpl =
∑
w

~ωw(b†wbw +
1

2
) (4.5)

Where b†w and bw create and annhilate respecitively a quantum of energy in the plasmon mode qw
2.

The Plasmon-Photon interaction Hamiltonian can then be written as [18][19]:

Hpl−pt = ie~
√

NVp
4mVRε0εm

∑
w

(
εptw aptb

†
w − (εptw )∗a†ptbw

)
(4.6)

Where Vp is the volume of the metallic nanoparticle, VR the normalizing volume of the electromagnetic field and

εptw = CLF

∫
Vp

dr′ept · qw(r′)eikpt·r′ (4.7)

is a factor that gives the selection rules for the interaction of light with the plasmonic mode w. Moreover CLF
is a local field correction factor which accounts for the difference between the microscopic light field that couples
to the plasmonic mode qw(r) and the incident macroscopic field Apt [18].
The Plasmon-Photon coupling matrix elements are thus:

Mw
pl−pt =

〈
1pl
w , 0

pt

∣∣∣∣Hpl−pt

∣∣∣∣0pl
w , 1

pt
kpt,ept

〉
= ie~

√
NVp

4mVRε0εm
εpt
w (4.8)

The Plasmon-Molecule interaction Hamiltonian can be written as [17] [18]:

Hpl−vib = −µ ·ELSP (r) =
∑
w

e

ε0εm

√
~NVp
2mωw

(
b†w + bw

)
µ ·Gw(r) (4.9)

Where ELSP (r) is the electric field generated by the plasmonic nanostructure and

Gw(r) = CLF∇r

∫
Vp

dr′qw (r′) · ∇r′G0 (r, r′) (4.10)

Where G0 (r, r′) is a Green function that gives the field distribution outside the plasmonic nanoparticle 3.
The Plasmon-Molecule coupling matrix elements are:

Mw,i
vib−pl =

〈
0pl
w , i

vib

∣∣∣∣Hpl−vib

∣∣∣∣1pl
w , g

vib

〉
= µ0e

√
~NVpω3

w

2m
µgj ·Gw(r) (4.12)

The Light-Molecule coupling matrix elements are

Mj
vib−pt =

〈
0pt, jvib

∣∣∣∣Hpt−vib

∣∣∣∣1pt
kpt,ept

, gvib

〉
= −i

√
~ωpt

2VRε0εm
eikpt·rept · µgj (4.13)

Moreover, it is interesting to notice that this theory considers the standard Raman processes within 2o-TDPT.
This means that Herzberg-Teller contributions still need to be introduced to further simplify the electron-photon
interaction terms.

2These qw vectors can be viewed as the amplitude of an harmonic displacement. Indeed these are the eigenmodes associated to
the current distribution generated by the collective free oscillations at each resonance frequency ωw of the particle electron gas.

3Indeed the electric near field of the plasmonic nanostructure is calculated within the electrostatic approximation as the gradient
of the scalar potential ELSP (r) = −∇rφpl(r), where

φpl(r) = −
1

ε0εm

∫
Vp

dr′ρ
(
r′
)
G0

(
r, r′

)
(4.11)

.
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4.2 SERS as HORa Process: CT Enhancement

In this section I will analyze the theory from Barros and Dresselhaus [15] for the description of the Raman-
enhancement effect by 2D materials. Due to the geometry of 2D materials, EM-SERS should be negligible,
making the following theory useful to describe CT-SERS effects. This theory is based on considering the following
Hamiltonian:

H = H0 +Her +Hep (4.14)

Where H0 is the equilibrium Hamiltonian for the system, which includes a molecular (HM ) part, a surface
(HS) part and a coupling (HSM ) term. The coupling term is assumed here to be evaluated at the equilibrium
position for both the surface atoms and the atoms within the interacting molecule. Let’s also assume that
the eigenstates of the equilibrium Hamiltonian H0 can be described as a combination of eigenstates localized
at the molecule and eigenstates localized at the surface atoms. The remaining tems in Eq. 4.14, namely Her

and Hep, correspond to the electron-radiation and electron-phonon interactions, respectively, and are treated
using perturbation theory. Up to now, no differences are present with respect to the 3o-TDPT treatment for
Raman we developed in the previous section. It is now important to introduce a few considerations about the
possible many-body states. First, we will assume that when the molecule is not in contact with the surface, the
main spectroscopic properties of the molecule can be described in terms of its highest occupied molecular orbital
(HOMO) and its lowest unoccupied molecular orbital (LUMO). Also, in the absence of molecules, the surface
electronic states are described by an electronic band (or a set of electronic bands in the case of a semiconducting
surface) in which the Fermi energy (EF) is defined as the energy of the highest occupied electronic state of
the surface. As we will see in the following, the relationship between the HOMO and LUMO energies of the
molecule and the Fermi energy of the metal will be one of the determining factors governing the intensity of the
Raman enhancement. When the molecule is in contact with the substrate, the surface-molecule interaction can
be classified in terms of two broad classes: interaction without charge transfer and with charge transfer. In the
first situation, the occupancy of the HOMO and/or the LUMO states will not be modified by the interaction.
This is usually the case when the HOMO state is positioned well below the Fermi level of the surface and the
LUMO state is above it. In the second case (with charge transfer), the distribution of electronic states is not so
trivial and the HOMO state of the molecule can become partially or totally unoccupied, or the LUMO state can
be occupied by electrons coming from the surface. Considering the Stokes Raman processes, where a phonon is
generated in the molecule, the scattring processes ivolved in the Raman process are the same as in Fig.3. Thus,

the total scattering amplitude is given by Wσ,ρ,q = W
(rpr)
σ,ρ,q +W

(rrp)
σ,ρ,q +W

(prr)
σ,ρ,q , where:

W (rpr)
σ,ρ,q =

∑
ik′k

χiqk′k
Mer,ρ
ik′ M

ep,q
k′k M

er,σ
ki

(Ek′ − Ei + ~ωq − ~ω0) (Ek − Ei − ~ω0)

+ ξiqk′k
Mer,ρ
kk′ M

ep,q
ik Mer,σ

k′i

(Ek′ − Ek + ~ωq − ~ω0) (Ek′ − Ei − ~ω0)

(4.15)

W (rrp)
σ,ρ,q =

∑
ik′k

χiqk′k
Mep,q
ik′ M

er,ρ
k′k M

er,σ
ki

(Ek − Ei − ~ω0) (Ek′ − Ei − ~ωq)

+ ξiqk′k
Mep,q
kk′ M

er,ρ
ik Mer,σ

k′i

(Ek′ − Ei − ~ω0) (Ek′ − Ek − ~ωq)

(4.16)

W (prr)
σ,ρ,q =

∑
ik′k

χiqk′k
Mer,ρ
ik′ M

er,σ
k′k M

ep,q
ki

(Ek′ − Ei + ~ωq − ~ω0) (Ek − Ei + ~ωq)

+ ξiqk′k
Mer,ρ
kk′ M

er,σ
ik Mep,q

k′i

(Ek′ − Ek + ~ωq − ~ω0) (Ek′ − Ei + ~ωq)

(4.17)

Where i, k and k′ are single electron states of the system. Moreover

χiqk′k =

{ √
nq + 1fi (1− fk) (1− fk′) , if i 6= k 6= k′√
nq + 1fi (1− fk) , if k′ = k or i = k or k′

(4.18)

and

ξiqk′k =

{ √
nq + 1fifk (1− fk′) , if i 6= k 6= k′

0, if k′ = k or k′ = i
(4.19)

where fi , fk′ , and fk are the occupancies (1 or 0) for each of these states in the initial state |I〉. Note that for
each process there are two terms, one proportional to χiqk′k and one proportional to ξiqk′k . The first term can be
interpreted in terms of electron-phonon scattering and the second in terms of hole-phonon scattering. The main
difference with respect to the usual Raman spectroscopy is that now, the electronic states take into account both
surface and molecular states.
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4.2.1 Rensonance Processes

Let’s assume a weak interaction regime, thus a negligible charge transfer between the molecule and the surface
is assumed, meaning that the HOMO state of the molecule is fully occupied whereas the LUMO is unoccupied.
Processes involving only states of the molecule or of the surface are not of our interest. Thus, the possible initial
state can be either of the surface or of the molecule (the HOMO). For each sequence of scattering events (rpr, rrp,
prr) there are six processes for the electrons and six for the holes, depending on the sequence of states involved.
For example a process such as the (rrp)-SMM involve a photon mediated transition from initial state S to the
LUMO state in the molecule, a transition from the LUMO to the HOMO due to the emission of a photon and
the transition from the HOMO to the initial state S due to the scattering of a phonon. It has to be noticed
that due to the weak interaction regime, this process should have a vanishing contibution due to the transition
from the LUMO to the occupied HOMO (Pauli blocking). Moreover in this discussion Barros and Dresselhaus
are interested in the vibrational modes of the molecule, and thus the phonon mediated processes involve the
excitation of phonons within the molecule. Thus, the possible scattering of phonons in the surface is disregarded.
For this reason, those processes proportional to Mep

SS , i.e. that involve the scattering of a phonon in the molecule
due to the transition between two electronic surface states, are considered to be rather weak. In any case, the
surface-molecule Raman process will be given by a sum of 36 different processes, each one having a different set
of resonance conditions and a different dependence on the position of the Fermi level. The whole set of matrix
elements can be found in the following Fig. 5. In deriving these, it has been used the fact that the summation

Figure 5: Expressions for all relevant surface-enhanced Raman processes considering a two-state molecule inter-
acting with a general 2D surface. The values EL,EH , ω0,and ωq are the energies for the LUMO and HOMO
states of the molecule,the incident laser and the phonon involved with the Raman process respectively.[15]

over the surface states can be transformed into an integral over the possible electronic energies by defining the
density of electronic states g(E) =

∑
k′

∫
dEδ(E −Ek′) where k′ covers all the possible electronic surface states,

meaning for example that:

W(rpr)−MMSe =

∫
dEḠ(E)

Mer
HS(E)Mep

SL(E)Mer
LH

(EL − EH − ~ω0) (E − EH + ~ωq − ~ω0)
(4.20)

Where the density of occupied states G(E) = f(E − EF )g(E), and density of unoccupied states Ḡ(E) = [1 −
f(E − EF )]g(E) have been defined considering f(E − EF ) the Fermi-Dirac distribution. The last note is that
this theory would be in principle applicable to a variety of materials, however for insulators or semiconductors,
excitonic effects might become relevant and open new scattering channels.

4.3 Merging the Theories: a Personal Suggestion

Up to now, the model presented treats situations in which the two enhancement effects i.e. EM and CT can be
easily separated. In a generic SERS experiment, however this might not be the case, for example if the analyte
is adsorbed onto a surface but it also feels the effect of a plasmon field [1]. The goal of this section will be first of
all to reformulate the EM-HORa (Sec.4.1) approximating the molecular Hamiltonian according to the vibronic
coupling theory Eq. 3.22. Then a common theory to treat both EM and CT SERS will be presented. Thus, the
quantities that have to be calculated in order to develop a computational tool able to simulate SERS spectra will
be analyzed, highlighting the possible theoretical and computational issues that might arise.
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4.3.1 EM+CT SERS as HORa Processes

Let’s condsider the following Hamiltonian:

H = Hr
0 +Hel

0 +Hp
0 +Hpl

0 +Hep +Her +Hepl +Hrpl (4.21)

WhereHr
0 ,Hel

0 ,Hp
0 andHpl

0 are the radiation field (Eq. 2.15), the equilibrium electronic Hamiltonian, the molecule
phonon (Eq. 3.21) and the metal plasmon (Eq. 4.5) unperturbed Hamiltonians respectively. Moreover, Hep,
Her, Hepl and Hrpl are the electon-phonon (Eq. 3.23), electron-radiation (Eq. 2.24), electron-plasmon (Eq. 4.9)
and photon-plasmon (Eq. 4.6) interaction Hamiltonians. Starting from this, the perturbative time-dependent
treatment of the plasmon-mediated Raman scattering of the analyte needs to be expanded up to the fifth-order.
Let’s now consider the possible molecule to surface interaction effects. In particular, let’s assume that Hel

0 can
be split into a molecular (HM

0 ) part, a surface (HS
0 ) part and a coupling (HSM

0 ) term between the molecule

and the surface. Moreover, let us assume that Hp
0 can be split in a phononic Hamiltonian for the surface Hp,S

0

and a phononic Hamiltonian for the molecule Hp,M
0 (this approximation can be reasonable in the weak-coupling

regime). The discussion has nothing different with respect to that in Sec. 4.2. However, due to the fact that
the plasmon-mediated processes reach the fifth-order in PT, also 2-phonon and 3-phonon processes need to be
accounted. In the following figure (Fig.6) the set of Feynman diagrams related to the possible plasmon-molecule-
surface scattering processes up to fifth order are reported:
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Figure 6: Representation of the possible processes involved in a SERS experiment under the approximations of
the model presented so far. The processes are reordered according to the order they appear in the perturbative
expansion. Time evolves from bottom to the top. The green line represents the plasmonic field and w, w′, ...
represent plasmonic states with excitation energy ~ωw′ , ~ωw′′ and so on. The black line represents the electronic
system (molecule + surface) and r, k, m, j are zero-order Born-Oppenheimer states. The time permutation of
the processes is not taken into account. Moreover 5th order processes where phonons are both absorbed and
emitted by the electronic system are not considered for simplicity, but their Feynman diagrams and scattering
amplitudes are rather straightforward.

Where the scattering amplitudes will take the following form (only two amplitudes are reported):

Kww′,rm
pl−q−pl (ωL) =

1

~5

Mph−pl
w′w Mpl−e

ri,w′′w′Mp−e
mr,qM

e−pl
fr,w′′′w′′M

pl−ph
ww′′′

(ωw′w − ωL)(ωri − ω1)(ωmi − ωL + ωq)(ωfi − ωL + ωq + ω2)
(4.22)

Kww′,rmk
e−qq′−pl (ωL) =

1

~5

Me−ph
ri Me−p

mr,qM
e−p
km,q′M

e−pl
fk,w′wM

pl−r
w′′w′

(ωri − ωL)(ωmi + ωq − ωL)(ωkm + ωq + ωq′ − ωL)(ωfi − ωL + ωq + ωq′ + ω1)
(4.23)

The term Ke−qq′−pl indicates a process where the electronic system (surface + molecule) absorbs the radiation
field photon, then two phonons q and q′ are subsequently scattered and then the plasmon emits light (meaning
that a virtual photon is exchanged between the electronic system and the metal-plasmon system).
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4.3.2 Computational Feasibility and Complications

In order to develop a computational tool able to simulate such spectra we need to careful analyze the different
quantities that need to be calculated. In order to evaluate the resonance conditions (the complex part of the
denominator, i.e. the transition linewidths, were not taken into account for sake of simplifying the notation) the
phonon energies, plasmon energies and electronic excitation energies need to be known. Ideally first principle
calculations could be performed in order to determine the vibrational and electronic properties of the molecule-
surface hybrid system. However, computational limitations arise immediately as the system of interest grows,
tending to more realistic structures. Focused models such as QM/MM [20][21] can be used for estimating the
electronic properties of the analyte, treating the surface as an embedding environment within the framework of
molecular mechanics (MM). This approach disregards the electronic structure of the surface, leading to severe
problems related to the estimation of the surface-molecule interaction matrix elements (Eq.3.23, Eq.2.24) and
in the evaluation of the alignment of the molecule-surface energy levels. Regarding the plasmon, the qw LSP
eigenvectors need to be calculated. Many approaches such as modal-expansion discrete-dipole approximation [22]
and boundary-elements method eigenmode expansion [23] may be used to obtain these eigenvectors. Another
possible approach might make use of approximate molecular mechanics models such as the recently developed
frequency-dependent fluctuating charges (ωFQ) [24] to reproduce the plasmonic response of complex nanostruc-
tures. This approach would fit perfectly in a focused treatment of the analyte within a QM/MM methodology,
where the emebedding of the analyte takes into account both the surface and the plasmonic-metal. Within our
model, the fact that the plasmonic material is not treated within an ab-initio methodology, shouldn’t be such of
a problem when evaluating interaction matrix elements (in contrast to the surface-molecule coupling terms), as
far as the qw eigenvectors are known and the quantity Gw(r) in Eq.4.10 can be calculated. However, it has to
be considered that the Jellium model used by Finazzi and Ciccacci [19] to determine the quantized expression
for the unperturbed plasmon Hamiltonian Eq.4.5, has its roots in the Drude model for metals and therefore it
disregards possible interband transitions, i.e. the promotion of electrons from low lying bands to the conduction
band. This effect should be more evident for laser frequencies in the visible to UV range. Unfortunately, the
UV-Vis range is also the range in which electronic resonances usually fall and thus where CT-SERS effect might
give a substantial contribution to the signal. Thus the model itself might show some deficiencies when the laser
frequency is high enough to match band to band transitions. In addition to all of this, if the molecule and the
surface interact in a stronger way, possible spilling of charge between the molecule and the surface might happen.
This was not considered so far. Moreover, other complications might appear if the plasmonic-metal is also the
surface on which the molecule is adsorbed and thus its electronic states contribute to the CT-SERS. In this case,
indeed, a coupling between the plasmons and the normal mode of the surface is present, allowing the plasmon
to decay [25]. A possible coupling with the normal modes of the molecule might therefore be present, opening
different scattering channels. Another issue is the approximation of the nuclear Hamiltonian as a collection of
harmonic oscillators. Although for classical Raman this can be an acceptable approximation, in HORa-SERS
theory, where the perturbative terms reach the fifth-order and two and three phonon scattering events need to
be considered (see Fig.6), this approximation can become rather crude and underestimate the intensity of certain
scattering channels. A possible solution can be that of expanding the nuclear Hamiltonian to higher orders in
the normal modes, thus including higher-order force constants (see for example Ref. [14] for a possible form of
the Hamiltonian). Another problem with this model arises when the CT-substrate is a semiconductor. In this
case excitonic effects can become relevant. Although a possible solution to this problem have been presented by
Lombardi et Al. [26], up to my knowledge no effort has been done to include this effect within the HORa theory
of SERS.

5 Conclusions

In conclusion, surface enhanced Raman spectroscopy (SERS) is a widely used experimental technique. Classically,
the mechanisms for the enhancement are recognized to be a combination of electromagnetic (EM) and chemical
(CT) mechanisms. Most recent theoretical models describe these processes as high-order Raman processes
(HORa) within the framework of time-dependent perturbation theory (TDPT). Quantization of the radiation
field is mandatory whereas the quantization of the localized surface plasmon and of the vibrational nuclear
Hamiltonian result to be useful approximations in order to develop the theory. The possible scattering channels
for both the EM and CT effects are highlighted and they involve a sequence of scattering events involving
different particles/quasi-particles and electronic states owing either to the molecule or to the enhancing surface.
The enhancement mechanisms are identified as resonance transitions among one of the scattering processes
involved in a certain scattering channel. In this work, I tried to give a self-contained discussion of SERS as
an HORa process within TDPT, trying moreover to suggest a way to unify the EM and CT theory within
the same framework. The advantages of this modelling rely in the clarity of the physical processes involved
and in the possibility of adding extra terms to the Hamiltonian (e.g. electron-2-phonons interaction terms)
without compromising the theoretical framework (there is only the need of drawing extra Feynman diagrams and
calculating extra quantities). However, many complications are present due to the intrinsic complexity of the
physics of SERS but their possible solution go beyond the scope of this work.
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