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This document is under construction. These are just some simple notes from
ideas I am exploring regarding intent matching problems.

1 Theory

Let us consider a set of users sending swap orders with limit price.
When the swap order for the i-th user is executed, we have (Se

i , B
e
i ,Π

e
i ),

where Se
i is the executed sell amount of token X, Be

i is the executed buy amount
of token Y, while Πe

i is the executed price, defined as:

Πe
i =

Se
i

Be
i

≤ Smax
i

Bmin
i

= Πlim
i (1)

We can think of each user’s intent as a directed edge connecting two nodes,
which are the X and Y tokens.

Thanks to this, finding matching intents, means finding closed loops in such
intent-multigraph.

Given a closed loop L of N intents, we need to satisfy the following condition

Πe
i ≤ Πlim

i , ∀i ∈ L (2)

Since in a closed loop Be
i = Se

i−1, then Eq. 2 reads also:

Se
i

Se
i−1

= Πlim
i , ∀i ∈ L , where if i = 1 then i− 1 = N (3)

Thus, even if we are capable of finding a closed loop in the intent multigraph,
we are not sure that this loop can be transformed into a valid set of transactions
until we find at least a solution to Eq. 3 for all nodes in the loop L.

Let us study the two limiting cases:

1.1 No Partial Fill

If no intent is partially fillable, the for each user Se
i ≡ Smax

i . Thus, the solution
to the problem exists only if:
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Smax
i

Smax
i−1

≤ Πlim
i , ∀i ∈ L (4)

This condition can be checked in parallel for each i, and thus it is efficiently
verifiable.

1.2 All Intents are Partially Fillable

If the intents will all admit partial fill, the situation is trickier.
Let’s consider L, a N-dimensional loop. A solution to the intent-matching

problem exists if we can solve Eq. 3. This problem is self-consistent, i.e. Se
i will

depend on Se
i−1. The minimal condition acceptable by each user is such that

Se
i

Se
i−1

= Πlim
i , ∀iL (5)

Let us now apply the following logarithmic transformation

log

(
Se
i

Se
i−1

)
= log

(
Πlim

i

)
(6)

By calling log(A) = ã, and employing the properties of the log function, we
can rewrite Eq. 6 as:

s̃ei − s̃ei−1 = π̃lim
i (7)

which can be written in matrix form as:

Ms̃ = π̃lim (8)

Where

ã = [ã1, ..., ãN ]
t

(9)

M =


1 0 · · · 0 −1
−1 1 · · · 0 0
...

...
. . .

...
...

0 0 · · · −1 1

 (10)

Thus M is a N ×N matrix with ones on the diagonal and −1 in the lower
sub-diagonal.

However,

det(M) ≡ 0 , ∀N (11)

This is the consequence of the fact that for M:

row1 = (−1) ·
N∑
i>1

rowi (12)
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Thus, our problem either has 0 ort ∞ solutions.
To evaluate if at least 1 solution (and thus ∞), exists, we can use the Rouche-
Capelli theorem, i.e.

Given Ax = b, if Rank(A) = Rank([A|b]) then the system has ∞
solutions

This theorem can be used rather efficiently (e.g. Python).

1.2.1 Example: 2 partially fillable intents

Let us consider two users providing partially fillable intents, one selling X for
Y and the other selling Y for X. Let us also assume that they agree on the
relative price of tokens X and Y.

Then

Πlim
2 =

1

Πlim
1

(13)

Thus, our logarithmically-transformed problem reads:[
1 −1
−1 1

] [
s̃1
s̃2

]
=

[
π̃1

−π̃2

]
(14)

It is rather clear that

Rank

([
1 −1
−1 1

])
= 1 = Rank

([
1 −1 π̃1

−1 1 π̃2

])
(15)

Thus, in this case, we have ∞ solutions. This makes sense since, if the two
users agree on the relative price, then each coin exchange that preserves the
price is a valid solution.
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